If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y+5y^2+4+y=0
We add all the numbers together, and all the variables
5y^2+21y+4=0
a = 5; b = 21; c = +4;
Δ = b2-4ac
Δ = 212-4·5·4
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-19}{2*5}=\frac{-40}{10} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+19}{2*5}=\frac{-2}{10} =-1/5 $
| 20y+5y^2+4+y20y=0 | | 2/5(x-1/3)=2/3(1/2-2x) | | 11x+28=12x-4+15x | | 108-u=245 | | 9x-32=2x+3 | | 4x-6=7x-2 | | 1.1x=68974.32 | | 7(y-8)=3y-44 | | 6x+7=9x-3 | | 1000=500*(1.0475^x) | | 4n+21+3n+19=180 | | 5a+6-8a=12 | | 6x+24=5x^2 | | 50-3x=7x+60 | | –2(2x+1)=1 | | 10(y-2)=-2(2+3) | | 1.75x=2.25x+10.5 | | 14/3=-2/9b | | -7(x-1)=5(x+3 | | (x-180)-(3x-40)=0 | | 12x-24=3x-6=6x+12 | | 12x-110=3x+40=2x-10 | | 3y-5=12-5=7 | | 15+2p=p+40 | | 10-k=-4k-114 | | 6x=4x=18 | | 9x=300+6x | | -4x+12=x+14+x | | 199=114-x | | 20c-5=10c-5 | | -y+40=175 | | 4.50+3x=15 |